MacMahon's partition analysis XIII: Schmidt type partitions and modular forms

نویسندگان

چکیده

In 1999, Frank Schmidt noted that the number of partitions integers with distinct parts in which first, third, fifth, etc., summands add to n is equal p(n), n. The object this paper provide a context for result leads directly many other theorems nature and can be viewed as continuation our work on elongated partition diamonds. Again generating functions are infinite products built by Dedekind eta function which, turn, lead interesting arithmetic conjectures related functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integer partitions, probabilities and quantum modular forms

What is the probability that the smallest part of a random integer partition of N is odd? What is the expected value of the smallest part of a random integer partition of N? It is straightforward to see that the answers to these questions are both 1, to leading order. This paper shows that the precise asymptotic expansion of each answer is dictated by special values of an arithmetic L-function....

متن کامل

Mock modular forms and d-distinct partitions

Article history: Received 22 August 2013 Accepted 20 December 2013 Available online 17 January 2014 Communicated by George E. Andrews MSC: 11P82 11P84 11F37 11F50 33D15

متن کامل

The Partition Function and Modular Forms

1. Intro to partition function and modular forms 1 2. Partition function leading term, without modular forms 2 3. Modular form basics 5 4. First application: Rademacher’s formula 6 4.1. A Transformation Formula for the η Function 6 4.2. Rademacher’s Convergent Series 14 5. Second application: Ramanujan congruences 22 5.1. Additional Results from Modular Functions 22 5.2. Proof of Ramanujan Cong...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2022

ISSN: ['0022-314X', '1096-1658']

DOI: https://doi.org/10.1016/j.jnt.2021.09.008